林德伯格-费勒定理,是中心极限定理的高级形式,是对林德伯格-列维定理的扩展,讨论独立的,但不同分布的情况下的随机变量和。它表明,满足一定条件时,独立的,但不同分布的随机变量序列的标准化和依然以标准正态分布为极限:
内容
记随机变量序列
X
i
{\displaystyle X_{i}}
(
X
i
{\displaystyle X_{i}}
独立但不一定同分布,
E
[
X
i
]
=
0
{\displaystyle E[X_{i}]=0}
且有有限方差)部分和为
S
n
=
∑
i
=
1
n
X
i
{\displaystyle S_{n}=\sum _{i=1}^{n}X_{i}}
记
s
i
2
=
V
a
r
(
X
i
)
{\displaystyle s_{i}^{2}={\rm {Var}}(X_{i})}
σ
n
2
=
∑
i
=
1
n
s
i
2
=
V
a
r
(
S
n
)
{\displaystyle \sigma _{n}^{2}=\sum _{i=1}^{n}s_{i}^{2}={\rm {Var}}(S_{n})}
.
如果对每个
ϵ
>
0
{\displaystyle \epsilon >0}
,序列满足
lim
n
→
∞
1
σ
n
2
∑
i
=
1
n
E
[
X
i
2
;
{
|
X
i
|
>
ϵ
σ
n
}
]
=
0
{\displaystyle \lim _{n\rightarrow \infty }{1 \over \sigma _{n}^{2}}\sum _{i=1}^{n}E[X_{i}^{2};\{|X_{i}|>\epsilon \sigma _{n}\}]=0}
则称它满足林德伯格(Lindeberg)条件。
满足此条件的序列趋向于正态分布,即
S
n
/
σ
n
→
d
N
(
0
,
1
)
{\displaystyle S_{n}/\sigma _{n}{\stackrel {d}{\rightarrow }}N(0,1)}
同时,该条件也是期望为零、方差有限的独立变量之和趋于正态分布的必要条件。
与之相关的是李雅普诺夫(Lyapunov)条件:
E
[
|
X
i
|
3
]
<
∞
,
lim
n
→
∞
1
σ
n
3
∑
i
=
1
n
E
[
|
X
i
|
3
]
=
0
{\displaystyle E[|X_{i}|^{3}]<\infty ,\,\lim _{n\rightarrow \infty }{1 \over \sigma _{n}^{3}}\sum _{i=1}^{n}E[|X_{i}|^{3}]=0}
满足李雅普诺夫条件的序列,必满足林德伯格条件。
证明
在此只对较强的李雅普诺夫条件给出证明。
以下证明对每一实数
t
{\displaystyle t}
,特征函数满足
φ
S
n
/
σ
n
(
t
)
→
e
−
t
2
/
2
{\displaystyle \varphi _{S_{n}/\sigma _{n}}(t)\rightarrow e^{-t^{2}/2}}
。
|
φ
S
n
/
σ
n
(
t
)
−
e
−
t
2
/
2
|
=
|
∏
k
=
1
n
φ
X
k
(
t
/
σ
n
)
−
∏
k
=
1
n
e
−
t
2
s
k
2
/
2
σ
n
2
|
≤
∑
k
=
1
n
|
φ
X
k
(
t
/
σ
n
)
−
e
−
t
2
s
k
2
/
2
σ
n
2
|
{\displaystyle \left|\varphi _{S_{n}/\sigma _{n}}(t)-e^{-t^{2}/2}\right|=\left|\prod _{k=1}^{n}\varphi _{X_{k}}(t/\sigma _{n})-\prod _{k=1}^{n}e^{-t^{2}s_{k}^{2}/2\sigma _{n}^{2}}\right|\leq \sum _{k=1}^{n}\left|\varphi _{X_{k}}(t/\sigma _{n})-e^{-t^{2}s_{k}^{2}/2\sigma _{n}^{2}}\right|}
泰勒展开,上式可近似为
∑
k
=
1
n
|
i
3
t
3
E
[
X
k
3
]
6
σ
n
3
+
t
4
s
k
4
8
σ
n
4
|
≤
|
t
|
3
6
σ
n
3
∑
k
=
1
n
E
[
|
X
k
|
3
]
+
t
4
8
σ
n
4
∑
k
=
1
n
s
k
4
≤
|
t
|
3
6
σ
n
3
∑
k
=
1
n
E
[
|
X
k
|
3
]
+
t
4
8
max
1
≤
k
≤
n
s
k
2
σ
n
2
{\displaystyle \sum _{k=1}^{n}\left|{\frac {i^{3}t^{3}E[X_{k}^{3}]}{6\sigma _{n}^{3}}}+{\frac {t^{4}s_{k}^{4}}{8\sigma _{n}^{4}}}\right|\leq {|t|^{3} \over 6\sigma _{n}^{3}}\sum _{k=1}^{n}E[|X_{k}|^{3}]+{\frac {t^{4}}{8\sigma _{n}^{4}}}\sum _{k=1}^{n}s_{k}^{4}\leq {|t|^{3} \over 6\sigma _{n}^{3}}\sum _{k=1}^{n}E[|X_{k}|^{3}]+{\frac {t^{4}}{8}}\max _{1\leq k\leq n}{s_{k}^{2} \over \sigma _{n}^{2}}}
由李雅普诺夫条件,当
n
→
∞
{\displaystyle n\rightarrow \infty }
时,第一项收敛于零。
令
k
n
=
a
r
g
max
1
≤
k
≤
n
s
k
2
/
σ
n
2
{\displaystyle k_{n}={\rm {arg}}\max _{1\leq k\leq n}s_{k}^{2}/\sigma _{n}^{2}}
,则由李雅普诺夫不等式,
(
s
k
n
/
σ
n
)
3
/
2
≤
E
[
|
X
k
n
/
σ
n
|
3
]
≤
1
σ
n
3
∑
k
=
1
n
E
[
|
X
k
|
3
]
{\displaystyle (s_{k_{n}}/\sigma _{n})^{3/2}\leq E[|X_{k_{n}}/\sigma _{n}|^{3}]\leq {\frac {1}{\sigma _{n}^{3}}}\sum _{k=1}^{n}E[|X_{k}|^{3}]}
因此第二项也收敛于零。
证毕。